Cellulose (CLL) Content Assay Kit
纤维素含量检测试剂盒
货号:AKSU007C
规格: 70T/50S
检测设备:可见分光光度计
可检测样本数:50 Samples
In Stock
BOXBIO提供专业的指标检测服务,如需检测服务,请点击右侧按钮
检测服务
Product Information
Cellulose (CLL) Content Assay Kit
4℃ Wet Ice Transportation
  • 检测样本量:50 Samples
  • 主要检测设备及配套:可见分光光度计/1 mL玻璃比色皿(d=10 mm)
  • 预计测定时间:20 h (50 Samples)
  • 试剂储存条件:按照标签要求储存
  • 需自备试剂:
    无水乙醇(C2H6O,MW=46.07,CAS: 64-17-5);
    丙酮(C3H6O,MW=58.08,CAS: 67-64-1);
    浓硫酸(H2SO4,MW=98.078,CAS: 7664-93-9)
Detection Principle
纤维素在酸性条件下可水解为β-D-葡萄糖,β-D-葡萄糖在强酸环境中脱水生成β-糠醛类化合物,进一步与蒽酮脱水缩合生成蓝绿色糠醛衍生物,产物在620 nm处具有特征吸收峰,通过吸光值变化即可定量检测纤维素的含量。
  • 检测方法: 酸水解-蒽酮比色法
  • 检测波长: 620 nm
  • 信号响应: 递增型
Refreence Information
  • 标准物质: Glucose
  • 参考标准: y=15.732x-0.0194 (R2=0.9997)
  • 标准线性范围: 0.00375-0.08 mg/mL
  • 检测限: 0.003 mg/mL
  • 注:不同仪器及比色材质会对结果产生影响,以实际测定值为准。
Notices

①若测定吸光值超出标准吸光值线性范围:高于最高值建议适当扩大待测样本稀释倍数后再进行测定;低于最低值建议适当减小待测样本稀释倍数或适当增加样本量后再进行测定,计算时相应修改;

②显色液组分B挥发性强且具有刺激性气味,建议在通风橱中进行显色液的配制,注意做好防护;

③提取液C具有强腐蚀性,操作时各个步骤均需特别注意:提取纤维素过程中,为保障自身安全,且防止冰水混合物进入离心管中造成试验误差,置于冰水浴中的离心管需较好固定;纤维素提取在加入提取液C时,应缓慢加入以防止液面沸腾烫伤及样本碳化;95℃水浴结束取出后需冷却至室温再打开离心管盖,以防液体飞溅烧伤;

注: 为保证结果准确且避免试剂损失,测定前请仔细阅读说明书(以实际收到说明书为准),确认试剂储存和准备是否充分,操作步骤是否清楚,且务必取2-3个预期差异交的样本进行预测定,过程中问题请您及时与工作人员联系。
Product Citation

[1] Liang Q, Chen S, Hua S, et al. Biomimetic Versatile Anisotropic, Electroactive Cellulose Hydrogel Scaffolds Tailored from Fern Stem Serving as Nerve Conduit and Cardiac Patch[J]. Advanced Science, 2024: 2400002. (IF 14.3)

[2] Zhang Y, Huang S, Cheng Y, et al. Enhanced lignocellulose degradation and composts fertility of Flammulina filiformis residue and eco-friendly insect (Protaetia brevitarsis) composting by microbial agents-loaded biochar[J]. Chemical Engineering Journal, 2025: 164126. (IF 13.3)

[3] Li Y, Sun H, Mu T, et al. Green valorization of sweet potato vines: Efficient cellulose extraction and γ-valerolactone recovery via biorefinery platform[J]. Carbohydrate Polymers, 2025: 123998. (IF 12.5)

[4] Wang S, Long H, Hu X, et al. The co-inoculation of Trichoderma viridis and Bacillus subtilis improved the aerobic composting efficiency and degradation of lignocellulose[J]. Bioresource Technology, 2024, 394: 130285.(IF 11.4)

[5] Kang Z, Meng N, Liu M, et al. Dynamic high pressure microfluidization modified oat dietary fiber: texture modulation and its mechanistic in whole grain oat milk[J]. Food Hydrocolloids, 2024: 110418. (IF 11.0)

[6] Wang Q, Xiu J, Liu B, et al. Enhanced fermentation and deconstruction of natural wheat straw by Trichoderma asperellum T-1 and its positive transcriptional response[J]. Bioresource Technology, 2024, 406: 130971. (IF 9.7)

[7] Hao Y, Lu F, Pyo S W, et al. PagMYB128 regulates secondary cell wall formation by direct activation of cell wall biosynthetic genes during wood formation in poplar[J]. Journal of Integrative Plant Biology, 2024. (IF 9.3)

[8] Zhang L, Wen X, Chen X, et al. GhCASPL1 regulates secondary cell wall thickening in cotton fibers by stabilizing the cellulose synthase complex on the plasma membrane[J]. Journal of Integrative Plant Biology, 2024. (IF 9.3)

[9] Zhang W, Guan M, Chen M, et al. Mutation of OsNRAMP5 reduces cadmium xylem and phloem transport in rice plants and its physiological mechanism[J]. Environmental Pollution, 2024, 341: 122928.(IF 8.9)

[10] Li J, Xi H, Wang A, et al. Effects of high-pressure microfluidization treatment on the structural, physiochemical properties of insoluble dietary fiber in highland barley bran[J]. International Journal of Biological Macromolecules, 2024: 129743.(IF 8.2)

[11] Wang Z, Chen Y, Hong Y, et al. From laboratory-level construction to pilot-level validation: Utilization of compound mutagenic bacterial agent for efficient treatment of kitchen waste[J]. Journal of Environmental Chemical Engineering, 2025, 13(3): 116441. (IF 7.4)

[12] Xing K, Liu Z, Liu L, et al. N6‐methyladenosine mRNA modification regulates transcripts stability associated with cotton fiber elongation[J]. The Plant Journal, 2023.(IF 7.2)

[13] Huang Q, Hong T, Zheng M, et al. High-pressure homogenization treatment of red seaweed Bangia fusco-purpurea affects the physicochemical, functional properties and enhances in vitro anti-glycation activity of its dietary fibers[J]. Innovative Food Science & Emerging Technologies, 2023, 86: 103369.(IF 6.6)

[14] Jiang C, Wang R, Liu X, et al. Effect of particle size on physicochemical properties and in vitro hypoglycemic ability of insoluble dietary fiber from corn bran[J]. Frontiers in Nutrition, 2022, 9: 951821.(IF 6.59)

[15] Chen B, Zhang Y, Sun Z, et al. Tissue‐specific expression of GhnsLTPs identified via GWAS sophisticatedly coordinates disease and insect resistance by regulating metabolic flux redirection in cotton[J]. The Plant Journal, 2021, 107(3): 831-846.(IF 6.486)

[16] Du Y, Gao F, Yuan S, et al. Metabolomic, transcriptomic and physiological analysis reveal the effects and potential mechanisms of cold plasma treatment on resistance of wolfberry during storage[J]. Postharvest Biology and Technology, 2024, 218: 113128. (IF 6.4)

[17] Liu Z, Hu Y, Du A, et al. Cell Wall Matrix Polysaccharides Contribute to Salt–Alkali Tolerance in Rice[J]. International Journal of Molecular Sciences, 2022, 23(23): 15019.(IF 6.208)

[18] Guo F, Yu W, Fu F, et al. Physiological, transcriptome and metabolome analyses provide molecular insights to seasonal development in Ginkgo biloba xylem[J]. Industrial Crops and Products, 2024, 208: 117930.(IF 5.9)

[19] Guo F, Yu W, Fu F, et al. Ginkgo biloba wood transcriptome reveals critical genes for secondary cell wall formation and transcription factors involved in lignin biosynthesis[J]. Industrial Crops and Products, 2024, 216: 118736. (IF 5.9)

[20] Zhang M, Zhou Y, Yang X, et al. Preparation of esterified biomass waste hydrogels and their removal of Pb2+, Cu2+ and Cd2+ from aqueous solution[J]. Environmental Science and Pollution Research, 2023, 30(19): 56580-56593.(IF 5.8)

[21] Tang J, Li Y, Gong S, et al. AaAO, AaPDE, and AaABC proteins promote Alternaria alternate f. sp. mali ALT7 invasion in apple leaves[J]. Horticultural Plant Journal, 2025. (IF 5.7)

[22] Huang Y, Li Y, Zou K, et al. The Resistance of Maize to Ustilago maydis Infection Is Correlated with the Degree of Methyl Esterification of Pectin in the Cell Wall[J]. International Journal of Molecular Sciences, 2023, 24(19): 14737.(IF 5.6)

[23] Sun W, Chen Y, Zeng J, et al. The Tartary buckwheat bHLH gene ALCATRAZ contributes to silique dehiscence in Arabidopsis thaliana[J]. Plant Science, 2023, 333: 111733.(IF 5.2)

[24] Kang Z, Meng N, Liu M, et al. Enhancement of physicochemical, in vitro hypoglycemic, hypolipidemic, antioxidant and prebiotic properties of oat bran dietary fiber: Dynamic high pressure microfluidization[J]. Food Bioscience, 2024: 104983. (IF 4.8)

[25] Ren F, Liu Y, Tian X, et al. What microbes do we eat with traditional fermented sour porridge from China?[J]. Applied Food Research, 2023, 3(2): 100344. (IF 4.5)

[26] Li W, Wang M, Zhang X, et al. Co-fermentation of dark septate endophytes and Trichoderma viride can effectively degrade cellulose in different Chinese medicinal herbal residues[J]. International Biodeterioration & Biodegradation, 2025, 196: 105949. (IF 4.1)

[27] Chen X, Liu Q, Zheng B, et al. Optimized Phosphorus Application Enhances Wheat Stem Lodging Resistance Under Spring Low-Temperature Stress[J]. Plants, 2024, 13(21): 2980. (IF 4.0)

[28] Luo X, Wu Z, Fu L, et al. Responses of the lodging resistance of indica rice cultivars to temperature and solar radiation under field conditions[J]. Agronomy, 2022, 12(11): 2603.(IF 3.949)

[29] Liao B, Feng T, Hou S, et al. Simulated microgravity confines and fragments the straw-based lignocellulose degrading microbial community[J]. Microbiology Spectrum, 2025: e02466-24. (IF 3.7)

[30] Liu X, Song J, Xiong J, et al. Characterization of an Excellent Hybrid Rice Restorer Line R382 with Enhanced Lodging Resistance[J]. Agronomy, 2024, 14(6): 1291. (IF 3.3)

[31] Jin L, Wen M, Liu F, et al. Physiological and Transcriptomic Analysis of Citrus Fruit Segment Drying under Facility-Forcing Cultivation[J]. Horticulturae, 2024, 10(8): 807. (IF 3.1)

[32] Li X, Xiu D, Huang J, et al. Nutshell Physicochemical Characteristics of Different Hazel Cultivars and Their Defensive Activity toward Curculio nucum (Coleoptera: Curculionidae)[J]. Forests, 2023, 14(2): 319.(IF 2.9)

[33] Lyu K, Sun H, Mu T. Structural Elucidation and Bioactivity Assessment of Lignin Mildly Extracted from Root and Tuber Crop Byproducts Using Γ-Valerolactone[J]. ACS Agricultural Science & Technology, 2025. (IF 2.9)

Related Products
Publication Reward
BOXBIO 助研基金申请
JOIN
*发表文章中注明Boxbio、北京盒子生工科技有限公司(Beijing Boxbio Science & Technology Co.,Ltd.) 即可申请。
Calculator
The Dilution Calculator Equation
Concentration (start)xVolume (start)= Concentration (final)× Volume (final)
This equation is commonly abbreviated as: C1V1 = C2V2
  • x
    =
    x
Make Science Easy
Personal Assistant
BoxLab Provides Butler service
Professional Technical support
Product Innovation Protocol
Quality Control
Box QC&AS Provides
Strict Quality Management Process
Considerate After Sales service
Professional Service
Box Customer Service Provides
Pre-sales Service
Product ordering and cooperation
北京盒子生工科技有限公司旗下产品
版权所有:Copyright(C)2020 北京盒子生工科技有限公司