Lignin Content Assay Kit
木质素含量检测试剂盒
货号:AKSU010U
规格: 60T/50S
检测设备:紫外分光光度计
可检测样本数:50 Samples
In Stock
BOXBIO提供专业的指标检测服务,如需检测服务,请点击右侧按钮
检测服务
Product Information
Lignin Content Assay Kit
4℃ Wet Ice Transportation
  • 检测样本量:50 Samples
  • 主要检测设备及配套:紫外分光光度计/1 mL石英比色皿(d=10 mm)
  • 预计测定时间:2 h (50 Samples)
  • 试剂储存条件:按照标签要求储存
  • 需自备试剂:
Detection Principle
木质素中的酚羟基发生乙酰化后生成乙酰木质素,产物在280 nm处具有特征吸收峰,通过吸光值变化即可定量检测木质素的含量。本试剂盒方法中含有脱糖和脱脂步骤,能够有效排除干扰物质使结果更加准确可靠。
  • 检测方法: 乙酰化法
  • 检测波长: 280 nm
  • 信号响应: 递增型
Notices

①根据乙酰化程度不同,需调整试剂七加入量,控制A测定处于0.1-0.8之间可保证结果准确性:

·若A测定大于0.8:建议将反应液使用试剂七适当稀释后再进行吸光值测定,可以设置几个梯度进行预实验确定稀释倍数,使A测定小于0.8即可,计算时修改公式中稀释倍数D即可;例如吸取100 μL反应液加入900 μL试剂七后充分混匀再进行吸光值测定,该条件下稀释倍数为10;

·若A测定小于0.1:建议适当减少试剂七的加入量使A测定大于0.1,例如吸取20 μL上清液加入980 μL试剂七,改为吸取20 μL上清液加入480 μL试剂七进行预实验,计算时修改公式中VS7即可(带入实际试剂七使用体积);

②乙酰化反应过程较为剧烈,建议使用带盖密封性较好的冻存管或玻璃试管作为反应容器,请确保无橡胶等易腐蚀材质(或不与橡胶材质接触),以免造成泄漏;

③称取样本时重量范围可参考4-10 mg范围内均可,将样本具体称量质量带入公式W即可;

注: 为保证结果准确且避免试剂损失,测定前请仔细阅读说明书(以实际收到说明书为准),确认试剂储存和准备是否充分,操作步骤是否清楚,且务必取2-3个预期差异交的样本进行预测定,过程中问题请您及时与工作人员联系。
Product Citation

[1] Liang Q, Chen S, Hua S, et al. Biomimetic Versatile Anisotropic, Electroactive Cellulose Hydrogel Scaffolds Tailored from Fern Stem Serving as Nerve Conduit and Cardiac Patch[J]. Advanced Science, 2024: 2400002. (IF 14.3)

[2] Li H, Yu K, Zhang Z, et al. Targeted mutagenesis of flavonoid biosynthesis pathway genes reveals functional divergence in seed coat colour, oil content and fatty acid composition in Brassica napus L[J]. Plant Biotechnology Journal, 2023.(IF 13.8)

[3] Zhang Y, Huang S, Cheng Y, et al. Enhanced lignocellulose degradation and composts fertility of Flammulina filiformis residue and eco-friendly insect (Protaetia brevitarsis) composting by microbial agents-loaded biochar[J]. Chemical Engineering Journal, 2025: 164126. (IF 13.3)

[4] Wang S, Long H, Hu X, et al. The co-inoculation of Trichoderma viridis and Bacillus subtilis improved the aerobic composting efficiency and degradation of lignocellulose[J]. Bioresource Technology, 2024, 394: 130285.(IF 11.4)

[5] Kang Z, Meng N, Liu M, et al. Dynamic high pressure microfluidization modified oat dietary fiber: texture modulation and its mechanistic in whole grain oat milk[J]. Food Hydrocolloids, 2024: 110418. (IF 11.0)

[6] Wang B, Luo C, Li X, et al. The FERONIA-RESPONSIVE TO DESICCATION 26 module regulates vascular immunity to Ralstonia solanacearum[J]. The Plant Cell, 2024: koae302. (IF 10.0)

[7] Wang Q, Xiu J, Liu B, et al. Enhanced fermentation and deconstruction of natural wheat straw by Trichoderma asperellum T-1 and its positive transcriptional response[J]. Bioresource Technology, 2024, 406: 130971. (IF 9.7)

[8] Yao X, Li H, Nie J, et al. Disruption of the amino acid transporter CsAAP2 inhibits auxin‐mediated root development in cucumber[J]. New Phytologist, 2023.(IF 9.4)

[9] Kong L, Song Q, Wei H, et al. The AP2/ERF transcription factor PtoERF15 confers drought tolerance via JA‐mediated signaling in Populus[J]. New Phytologist, 2023, 240(5): 1848-1867.(IF 9.4)

[10] Hao Y, Lu F, Pyo S W, et al. PagMYB128 regulates secondary cell wall formation by direct activation of cell wall biosynthetic genes during wood formation in poplar[J]. Journal of Integrative Plant Biology, 2024. (IF 9.3)

[11] Chen Y, Li D, Xu Y, et al. 5-Azacytidine accelerates mandarin fruit post-ripening and enhances lignin-based pathogen defense through remarkable gene expression activation[J]. Food Chemistry, 2024: 140261. (IF 8.5)

[12] Li J, Xi H, Wang A, et al. Effects of high-pressure microfluidization treatment on the structural, physiochemical properties of insoluble dietary fiber in highland barley bran[J]. International Journal of Biological Macromolecules, 2024: 129743.(IF 8.2)

[13] Ye J, Wu X, Li X, et al. Manipulation of seed coat content for increasing oil content via modulating BnaMYB52 in Brassica napus[J]. Cell Reports, 2025, 44(2). (IF 7.5)

[14]Liu B, Wang Q, Shen L, et al. Efficient conversion and deconstruction of waste straw using compound fungal agent: fermentation optimization, nutrient enrichment and microbial community analysis[J]. Journal of Environmental Chemical Engineering, 2024: 115252. (IF 7.4)

[15] Guo J, Li G, Ijaz M, et al. Transcriptomic and metabolomic analyses reveal that lignin biosynthesis contributes to bayberry (Myrica rubra) defence responses against twig blight[J]. Plant Stress, 2024: 100514. (IF 6.8)

[16] Zhao J, Hu X, Wang Y, et al. Comparative transcriptomic analysis and identification of candidate genes related to Verticillium wilt resistance in Gossypium barbadense and Gossypium hirsutum[J]. Plant Stress, 2025: 100759. (IF 6.8)

[17] Huang Q, Hong T, Zheng M, et al. High-pressure homogenization treatment of red seaweed Bangia fusco-purpurea affects the physicochemical, functional properties and enhances in vitro anti-glycation activity of its dietary fibers[J]. Innovative Food Science & Emerging Technologies, 2023, 86: 103369.(IF 6.6)

[18] Jiang C, Wang R, Liu X, et al. Effect of particle size on physicochemical properties and in vitro hypoglycemic ability of insoluble dietary fiber from corn bran[J]. Frontiers in Nutrition, 2022, 9: 951821.(IF 6.59)

[19] Liu C, Pan Z, Wang X, et al. Overexpression of phosphatidylserine synthase IbPSS1 enhances salt tolerance by stimulating ethylene signaling-dependent lignin synthesis in sweetpotato roots[J]. Plant Physiology and Biochemistry, 2024, 212: 108727.(IF 6.5)

[20] Du Y, Gao F, Yuan S, et al. Metabolomic, transcriptomic and physiological analysis reveal the effects and potential mechanisms of cold plasma treatment on resistance of wolfberry during storage[J]. Postharvest Biology and Technology, 2024, 218: 113128. (IF 6.4)

[21] Niu X, Hu Y, Wang X, et al. Glycine betaine and MiWRKY53 enhance antioxidant capacity and disease resistance against Colletotrichum gloeosporioides in mango fruit[J]. Postharvest Biology and Technology, 2025, 224: 113464. (IF 6.4)

[22] Jiang M, Yu N, Zhang Y, et al. Deletion of Diterpenoid Biosynthetic Genes CYP76M7 and CYP76M8 Induces Cell Death and Enhances Bacterial Blight Resistance in Indica Rice ‘9311’[J]. International Journal of Molecular Sciences, 2022, 23(13): 7234.(IF 6.208)

[23] Chen Y, Wang C, Tian S, et al. Abscisic Acid and Ethylene Antagonistically Regulate Root Endodermal Suberization to Mitigate Nonuniform Salt Stress in Cotton[J]. Plant, Cell & Environment, 2024. (IF 6.0)

[24] Lü S, Zhu Z, Yu X, et al. Phenylpropanoid Metabolites Mediate Antiviral Defense and Vector Resistance in Rice Infected With RRSV, RGSV, and SRBSDV[J]. Plant, Cell & Environment, 2025. (IF 6.0)

[25] Guo F, Yu W, Fu F, et al. Physiological, transcriptome and metabolome analyses provide molecular insights to seasonal development in Ginkgo biloba xylem[J]. Industrial Crops and Products, 2024, 208: 117930.(IF 5.9)

[26] Guo F, Yu W, Fu F, et al. Ginkgo biloba wood transcriptome reveals critical genes for secondary cell wall formation and transcription factors involved in lignin biosynthesis[J]. Industrial Crops and Products, 2024, 216: 118736. (IF 5.9)

[27] Zhang M, Zhou Y, Yang X, et al. Preparation of esterified biomass waste hydrogels and their removal of Pb2+, Cu2+ and Cd2+ from aqueous solution[J]. Environmental Science and Pollution Research, 2023, 30(19): 56580-56593.(IF 5.8)

[28] Sun K, Fan D, Peng Y, et al. The KNAT3a1-WND2A/3A Module Positively Regulates Fiber Secondary Cell Wall Biosynthesis in Populus tomentosa[J]. Horticultural Plant Journal, 2024. (IF 5.7)

[29] Lu J, Wang Y, Wen Y, et al. A ray localized vacuolar sucrose transport is required for wood formation in Populus tomentosa[J]. The Plant Journal, 2025, 123(2): e70347. (IF 5.7)

[30] Huang Y, Qian C, Lin J, et al. CcNAC1 by Transcriptome Analysis Is Involved in Sudan Grass Secondary Cell Wall Formation as a Positive Regulator[J]. International Journal of Molecular Sciences, 2023, 24(7): 6149.(IF 5.6)

[31] Huang Y, Li Y, Zou K, et al. The Resistance of Maize to Ustilago maydis Infection Is Correlated with the Degree of Methyl Esterification of Pectin in the Cell Wall[J]. International Journal of Molecular Sciences, 2023, 24(19): 14737.(IF 5.6)

[32] Liu L, Long C, Hao X, et al. Identification of key genes involved in lignin and flavonoid accumulation during Tilia tuan seed maturation[J]. Plant Cell Reports, 2024, 43(8): 205. (IF 5.3)

[33] Sun W, Chen Y, Zeng J, et al. The Tartary buckwheat bHLH gene ALCATRAZ contributes to silique dehiscence in Arabidopsis thaliana[J]. Plant Science, 2023, 333: 111733.(IF 5.2)

[34] Liu X, Wang S, Zeng K, et al. N-myristoyltransferase1 regulates biomass accumulation in cucumber (Cucumis sativus L.) 1[J]. Journal of Integrative Agriculture, 2024.(IF 4.8)

[35] Wang W, Zhong S, Tang W, et al. Transcriptome analysis reveals changes in lignin and flavonoid biosynthesis in Serendipita indica colonized Tartary buckwheat[J]. Frontiers in Plant Science, 2025, 16: 1595781. (IF 4.8)

[36] Xuan H, Cheng J, Pang L, et al. Physiological–Biochemical Characteristics and a Transcriptomic Profiling Analysis Reveal the Postharvest Wound Healing Mechanisms of Sweet Potatoes under Ascorbic Acid Treatment[J]. Foods, 2024, 13(16): 2569. (IF 4.7)

[37] Liu J, Wang Z, Chen B, et al. Expression analysis of the R2R3-MYB gene family in upland cotton and functional study of GhMYB3D5 in regulating Verticillium wilt resistance[J]. Journal of Integrative Agriculture, 2024. (IF 4.6)

[38] He Y, Gao Y, Hong H, et al. Megalurothrips usitatus Directly Causes the Black-Heads and Black-Tail Symptoms of Cowpea along with the Production of Insect-Resistance Flavonoids[J]. Plants, 2023, 12(22): 3865.(IF 4.5)

[39] Hou X, Li P, Wu X, et al. Differences in nutrient release and decay rate of poplar leaf litter and fine roots and their relationship with substrate quality and decomposition environment under ozone pollution[J]. Environmental and Experimental Botany, 2024, 226: 105898. (IF 4.5)

[40] Huang Y, Wu J, Lin J, et al. CcNAC6 Acts as a Positive Regulator of Secondary Cell Wall Synthesis in Sudan Grass (Sorghum sudanense S.)[J]. Plants, 2024, 13(10): 1352. (IF 4.5)

[41] Dao M, Li J, Wang M, et al. Transcriptomic analysis of Camellia japonica to scale insects infestation and functional characterization of pectin methylesterase gene CjPME28 and polygalacturonase gene CjPG1[J]. Plant Cell Reports, 2025, 44(8): 186. (IF 4.5)

[42] Shan B, Mo J, Yang J, et al. Cloning and functional characterization of a cinnamate 4-hydroxylase gene from the hornwort Anthoceros angustus[J]. Plant Science, 2024, 341: 111989. (IF 4.2)

[43] Chen H, Wang H, Zhao Z, et al. The Fiber Cell-Specific Overexpression of COMT2 Modulates Secondary Cell Wall Biosynthesis in Poplar[J]. Plants, 2025, 14(12): 1739. (IF 4.1)

[44] Chen X, Liu Q, Zheng B, et al. Optimized Phosphorus Application Enhances Wheat Stem Lodging Resistance Under Spring Low-Temperature Stress[J]. Plants, 2024, 13(21): 2980. (IF 4.0)

[45] Luo X, Wu Z, Fu L, et al. Responses of the lodging resistance of indica rice cultivars to temperature and solar radiation under field conditions[J]. Agronomy, 2022, 12(11): 2603.(IF 3.949)

[46] Wang Y, Zhou E, Yao M, et al. PEG-6000 Priming Improves Aged Soybean Seed Vigor via Carbon Metabolism, ROS Scavenging, Hormone Signaling, and Lignin Synthesis Regulation[J]. Agronomy, 2023, 13(12): 3021.(IF 3.7)

[47] Liao B, Feng T, Hou S, et al. Simulated microgravity confines and fragments the straw-based lignocellulose degrading microbial community[J]. Microbiology Spectrum, 2025: e02466-24. (IF 3.7)

[48] Sun T, Zhou G, Zhao Y, et al. Caterpillar feeding drives patterns of induced defenses and herbivore resistance in wild Pinus tabuliformis[J]. Journal of Forestry Research, 2024, 35(1): 133. (IF 3.4)

[49] Liu X, Song J, Xiong J, et al. Characterization of an Excellent Hybrid Rice Restorer Line R382 with Enhanced Lodging Resistance[J]. Agronomy, 2024, 14(6): 1291. (IF 3.3)

[50] Jin L, Wen M, Liu F, et al. Physiological and Transcriptomic Analysis of Citrus Fruit Segment Drying under Facility-Forcing Cultivation[J]. Horticulturae, 2024, 10(8): 807. (IF 3.1)

[51] Li Q Y, Wang S, Wu G Y, et al. Physiological and biochemical changes in leaf abscission of Cyclocarya paliurus stem segments in vitro[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2023: 1-11.(IF 3)

[52] Yu H, Yuan Y, Wang S, et al. Interspecies evolution and networks investigation of the auxin response protein (AUX/IAA) family reveals the adaptation mechanisms of halophytes crops in nitrogen starvation agroecological environments[J]. Agriculture, 2021, 11(8): 780.(IF 2.925)

[53] Li X, Xiu D, Huang J, et al. Nutshell Physicochemical Characteristics of Different Hazel Cultivars and Their Defensive Activity toward Curculio nucum (Coleoptera: Curculionidae)[J]. Forests, 2023, 14(2): 319.(IF 2.9)

Related Products
Publication Reward
BOXBIO 助研基金申请
JOIN
*发表文章中注明Boxbio、北京盒子生工科技有限公司(Beijing Boxbio Science & Technology Co.,Ltd.) 即可申请。
Calculator
The Dilution Calculator Equation
Concentration (start)xVolume (start)= Concentration (final)× Volume (final)
This equation is commonly abbreviated as: C1V1 = C2V2
  • x
    =
    x
Make Science Easy
Personal Assistant
BoxLab Provides Butler service
Professional Technical support
Product Innovation Protocol
Quality Control
Box QC&AS Provides
Strict Quality Management Process
Considerate After Sales service
Professional Service
Box Customer Service Provides
Pre-sales Service
Product ordering and cooperation
北京盒子生工科技有限公司旗下产品
版权所有:Copyright(C)2020 北京盒子生工科技有限公司