

①若测定样本较多,可将试剂一、试剂二和试剂三按比例配成检测工作液(现用现配),37℃(哺乳动物)或25℃(其它物种)预热10 min以上,测定时加入10 μL粗酶液和190 μL检测工作液;
②若使用96孔板进行检测,应使用多道移液器且分批进行检测,以确保组间反应时间一致;
③若ΔA小于0.005,可适当延长反应时间(3-5 min)后再进行测定;若ΔA大于0.5,建议将粗酶液使用提取液稀释后再进行测定,计算时相应修改;
[1] Wang J, Li X, Chen P, et al. Cellulase-and pH-Stimulating Selenium Nanopesticide Enhances Antifungal Efficacy to Anthracnose: Action Mechanism and Environmental Safety[J]. ACS nano, 2025. (IF 16.0)
[2] Yuan H, Cheng M, Fan F, et al. OsGRF6‐OsYUCCA1/OsWRKY82 Signaling Cascade Upgrade Grain Yield and Bacterial Blight Resistance in Rice[J]. Advanced Science, 2024: 2407733. (IF 14.3)
[3] Yuan H, Cheng M, Wang R, et al. miR396b/GRF6 module contributes to salt tolerance in rice[J]. Plant Biotechnology Journal, 2024. (IF 13.8)
[4] Chen L, Yue M, Liu X, et al. Dynamic distribution and temporal transcriptome adaptations elucidate lithium accumulation pattern in Cardamine violifolia[J]. Environmental Chemistry and Ecotoxicology, 2025. (IF 9.0)
[5] Li Z, Liu H, Xiao Y, et al. Uncovering the phytotoxicity of typical perovskite nanomaterials in peanut plants[J]. Environmental Chemistry and Ecotoxicology, 2025. (IF 9.0)
[6] Zhao Y, Li Y, Jin Y, et al. The inhibitory effects of Ulva prolifera extracts on early growth of Spartina alterniflora and the underlying mechanisms[J]. Journal of Environmental Management, 2022, 319: 115639.(IF 8.91)
[7] Li N, Zhang Y, Huo X, et al. Mechanism of fatty acid synthesis metabolism during tuber swelling period of Chinese yam[J]. Food Chemistry, 2025: 143556. (IF 8.5)
[8] Li S, Hussain M, Wu M, et al. Fungal CeRNase T2 from Cunninghamella echinulata disrupts detoxification pathways and cause behavioral inhibition in invasive ant Solenopsis invicta (Buren)[J]. International Journal of Biological Macromolecules, 2025: 145937. (IF 8.5)
[9] Liao F, Xu X, Wang H, et al. Antifungal lipopeptides from the marine Bacillus amyloliquefaciens HY2–1: A potential biocontrol agent exhibiting in vitro and in vivo antagonistic activities against Penicillium digitatum[J]. International Journal of Biological Macromolecules, 2024: 138583. (IF 7.7)
[10] Lei Y, Huang D, Zhou W, et al. Higher Remediation Efficiency of Cd and Lower CO2 Emissions in Phytoremediation Systems with Biochar Application[J]. Environmental Pollution, 2025: 126345. (IF 7.6)
[11] Huang C, Liu Y, Lu J, et al. Integrated physiological, transcriptomics, and metabolite analysis reveal photosynthetic toxicity related to the bisphenol A stress response mechanism in pepper (Capsicum annuum L.)[J]. Environmental Pollution, 2025: 126530. (IF 7.6)
[12] Pu T, Ge Y, Wu M, et al. Effects of black-odorous water bodies on the physiological ecology of Vallisneria natans and its attached biofilm microbial community[J]. Journal of Water Process Engineering, 2024, 63: 105529. (IF 7.0)
[13] Zhu K, Yan D, Wang Y, et al. Chlorophyll retention reduces storability and pathogen defense in a novel citrus brown flavedo mutant[J]. Postharvest Biology and Technology, 2022, 192: 112006.(IF 6.751)
[14] Guan H, Tao S, Pan Y, et al. Water transport, vascular bundle integrity, and enzymatic activity in rambutan pericarp and spine browning[J]. Postharvest Biology and Technology, 2025, 228: 113685. (IF 6.4)
[15] Li M, Liu X, Zhao X, et al. Phosphorylation of Wild Soybean (Glycine soja) Splicing Factor GsSCL30a by GsSnRK1 Regulates Soybean Tolerance to Alkali Stress[J]. Plant, Cell & Environment, 2025. (IF 6.3)
[16] Yao X, Zhou M, Ruan J, et al. Physiological and Biochemical Regulation Mechanism of Exogenous Hydrogen Peroxide in Alleviating NaCl Stress Toxicity in Tartary Buckwheat (Fagopyrum tataricum (L.) Gaertn)[J]. International Journal of Molecular Sciences, 2022, 23(18): 10698.(IF 6.208)
[17] Wang J, Zhai R, Ma Y, et al. Development of morphology-dependent nanoselenium carriers for enhancing biological activity and reducing plant stress[J]. Ecotoxicology and Environmental Safety, 2025, 291: 117804. (IF 6.2)
[18] Shu P, Li Y, Sheng J, et al. Tomato SlMAPK3 Modulates Cold Resistance by Regulating the Synthesis of Raffinose and the Expression of SlWRKY46[J]. Journal of Agricultural and Food Chemistry, 2024. (IF 6.1)
[19] Ren Y, Han Y, Zhou Y, et al. Chloroplast-targeting gold nanoclusters promoting leafy and fruit vegetables yields through improving photosynthesis[J]. Plant Physiology and Biochemistry, 2025: 109852. (IF 6.1)
[20] Liu M, Yu Y, Tang Z, et al. Small heat shock protein IbHSP18. 0 selected from Genome-wide association study enhances tolerance to low potassium stress in sweetpotato[J]. Plant Physiology and Biochemistry, 2025: 110094. (IF 6.1)
[21] Jing S, Begum S, Yu L, et al. StJAZ1-like mediated root architecture plays critical roles in drought susceptibility in potato[J]. Environmental and Experimental Botany, 2022, 202: 105008.(IF 6.028)
[22] Ouyang W, Ning J, Zhu X, et al. UPLC-ESI-MS/MS analysis revealed the dynamic changes and conversion mechanism of non-volatile metabolites during green tea fixation[J]. LWT, 2024: 116010. (IF 6.0)
[23] Yu X, Chen X, Wang N, et al. Melatonin regulated through GhTDC5 enhances tryptophan decarboxylase against drought stress in cotton[J]. Environmental Sciences Europe, 2025, 37(1): 1-19. (IF 6.0)
[24] Wang S, Shen X, Guan X, et al. Nano-silicon enhances tomato growth and antioxidant defense under salt stress[J]. Environmental Science: Nano, 2024. (IF 5.8)
[25] Qian Y, Yan J, Luo C, et al. Genome-wide analysis of the MYB gene family and functional analysis of BhMYB79 in wax gourd[J]. Horticultural Plant Journal, 2024. (IF 5.7)
[26] Gou R, Wang Y, Yang T, et al. ZeEIL1–ZeERF113–ZeMC2 cascade enhances colored calla lily resistance to soft rot through the ethylene signaling pathway[J]. Horticultural Plant Journal, 2025. (IF 5.7)
[27 Li J, Cai B, Chang S, et al. Mechanisms associated with the synergistic induction of resistance to tobacco black shank in tobacco by arbuscular mycorrhizal fungi and β-aminobutyric acid[J]. Frontiers in Plant Science, 2023, 14.(IF 5.6)
[28] Li G, Mo Y, Lv J, et al. Unraveling verticillium wilt resistance: insight from the integration of transcriptome and metabolome in wild eggplant[J]. Frontiers in Plant Science, 2024, 15: 1378748. (IF 5.6)
[29] Raza A, Li Y, Rizwan H M, et al. Harnessing light‐harvesting chlorophyll a/b‐binding proteins for multiple abiotic stress tolerance in Chlamydomonas reinhardtii: Insights from genomic and physiological analysis[J]. Physiologia Plantarum, 2024, 176(6): e14653. (IF 5.4)
[30] Sun Y, Wang N, Chen X, et al. GHCYP706A7 governs anthocyanin biosynthesis to mitigate ROS under alkali stress in cotton[J]. Plant Cell Reports, 2025, 44(3): 1-15. (IF 5.3)
[31] Zhou J, Zhang H, Huang Y, et al. Impact of Sulfur Deficiency and Excess on the Growth and Development of Soybean Seedlings[J]. International Journal of Molecular Sciences, 2024, 25(20): 11253. (IF 4.9)
[32] Wang J, Wang R, Liu L, et al. Integrated Physiological, Transcriptomic and Metabolomic Analyses of the Response of Rice to Aniline Toxicity[J]. International Journal of Molecular Sciences, 2025, 26(2): 582. (IF 4.9)
[33] Ma H, Liu X, Zhang R, et al. Function of Nodulation-Associated GmNARK Kinase in Soybean Alkali Tolerance[J]. International Journal of Molecular Sciences, 2025, 26(1): 325. (IF 4.9)
[34] Jian P, Zhang H, Xi X, et al. Research on the Response of Arbuscular Mycorrhizae Fungi to Grape Growth Under High Temperature Stress[J]. International Journal of Molecular Sciences, 2025, 26(13): 6165. (IF 4.9)
[35] Wang B, Wang T, Yun J, et al. Enzymatic browning of button mushrooms during postharvest cold chain circulation[J]. Food Bioscience, 2024: 105622. (IF 4.8)
[36] Zhang Y, Wang R, Wang H, et al. LuCSD3 Enhances Salt Stress Tolerance in Flax: Genome-Wide Profiling and Functional Validation of the SOD Gene Family[J]. Frontiers in Plant Science, 2025, 16: 1609085. (IF 4.8)
[37] Yang X, Chen M, Liu M, et al. ABA-GA antagonism and modular gene networks cooperatively drive acquisition of desiccation tolerance in perilla seeds[J]. Frontiers in Plant Science, 2025, 16: 1624742. (IF 4.8)
[38] Hui W, Li Y, Liu S, et al. Cyclo (Pro-Tyr) upregulates GmPOD53L to enhance soybean resistance to cyst nematode (Heterodera glycines Ichinohe)[J]. Frontiers in Plant Science, 2025, 16: 1628555. (IF 4.8)
[39] Song X, Hou X, Zeng Y, et al. Genome-wide identification and comprehensive analysis of WRKY transcription factor family in safflower during drought stress[J]. Scientific Reports, 2023, 13(1): 16955.(IF 4.6)
[40] Zheng X, Yuan Z, Yu Y, et al. OsCSD2 and OsCSD3 Enhance Seed Storability by Modulating Antioxidant Enzymes and Abscisic Acid in Rice[J]. Plants, 2024, 13(2): 310.(IF 4.5)
[41] Wang Y, Xie X, Chen H, et al. Selenium-Induced Enhancement in Growth and Rhizosphere Soil Methane Oxidation of Prickly Pear[J]. Plants, 2024, 13(6): 749. (IF 4.5)
[42] Zhang Q, Lin J, Yan J, et al. Enhanced Heat Resistance in Morchella eximia by Atmospheric and Room Temperature Plasma[J]. Microorganisms, 2024, 12(3): 518. (IF 4.5)
[43] Peng S, Duan C, Liu Q, et al. Biocontrol potential of Streptomyces sp. N2 against green and blue mold disease in postharvest navel orange and the action mechanism[J]. Food Microbiology, 2024: 104658. (IF 4.5)
[44] Zhao J, Huang M, Liu J, et al. Pepper (Capsicum annuum L.) AP2/ERF transcription factor, CaERF2 enhances salt stress tolerance through ROS scavenging[J]. Theoretical and Applied Genetics, 2025, 138(2): 44. (IF 4.4)
[45] Zhao J, Huang M, Liu J, et al. Pepper (Capsicum annuum L.) AP2/ERF transcription factor, CaERF2 enhances salt stress tolerance through ROS scavenging[J]. Theoretical and Applied Genetics, 2025, 138(2): 44. (IF 4.4)
[46] Chen M, Liu M, Wang C, et al. Critical radicle length window governing loss of dehydration tolerance in germinated Perilla seeds: insights from physiological and transcriptomic analyses[J]. BMC Plant Biology, 2024, 24(1): 1078. (IF 4.3)
[47] Wang Y, Guo Y, Li C, et al. Rhizosphere microorganisms mediate ion homeostasis in cucumber seedlings: a new strategy to improve plant salt tolerance[J]. BMC Plant Biology, 2025, 25(1): 1-15. (IF 4.3)
[48] Wang G, Zhang X, Du G, et al. Oleic Acid and Linoleic Acid Enhances the Biocontrol Potential of Metarhizium rileyi[J]. Journal of Fungi, 2024, 10(8): 521. (IF 4.2)
[49] Zhang Y, Zhang H, Zhang Y, et al. Utilizing physiologies, transcriptomics, and metabolomics to unravel key genes and metabolites of Salvia miltiorrhiza Bge. seedlings in response to drought stress[J]. Frontiers in Plant Science, 2025, 15: 1484688. (IF 4.1)
[50] Zeng L, Brown S E, Wu H, et al. Comprehensive genome-wide analysis of the HMGR gene family of Asparagus taliensis and functional validation of AtaHMGR10 under different abiotic stresses[J]. Frontiers in Plant Science, 2025, 16: 1455592. (IF 4.1)
[51] Yang J, Chen R, Liu W, et al. Genome-wide identification, phylogenetic investigation and abiotic stress responses analysis of the PP2C gene family in litchi (Litchi chinensis Sonn.)[J]. Frontiers in Plant Science, 2025, 16: 1547526. (IF 4.1)
[52] Wang W, Zhou M, Xu S, et al. Peanut 9-cis-epoxycarotenoid Dioxygenase Enhances Salt and Drought Stress Tolerance by Regulating ROS Homeostasis[J]. Plants, 2025, 14(12): 1741. (IF 4.1)
[53] Sun X, Zhu C, Li B, et al. Combining Physiology and Transcriptome to Reveal Mechanisms of Hosta ‘Golden Cadet’in Response to Alkali Stress[J]. Plants, 2025, 14(4): 593. (IF 4.0)
[54] Li Z, Li X, He F. Drip Irrigation Depth Alters Root Morphology and Architecture and Cold Resistance of Alfalfa[J]. Agronomy, 2022, 12(9): 2192.(IF 3.949)
[55] Yao X, Zhou M, Ruan J, et al. Pretreatment with H2O2 alleviates the negative impacts of NaCl stress on seed germination of Tartary buckwheat (Fagopyrum tataricum)[J]. Plants, 2021, 10(9): 1784.(IF 3.935)
[56] Wu H, Wang X, Gao H, et al. Alleviating Cd Stress in Sunflower (Helianthus annuus) through the Sodium Silicate Application[J]. Sustainability, 2024, 16(5): 2037. (IF 3.9)
[57] Zhai R, Shi M, Chen P, et al. Prothioconazole Stress Reduces Bacterial Richness and Alters Enzyme Activity in Soybean Rhizosphere[J]. Toxics, 2024, 12(10): 692. (IF 3.9)
[58] Yang J, Zhou Z, Qi W, et al. Phenotypic plasticity and integration synergistically enhance plant adaptability to flooding and nitrogen stresses[J]. Plant and Soil, 2025: 1-22. (IF 3.9)
[59] Li L, Wu S, Wang S, et al. Molecular Mechanism of Exogenous Selenium Affecting the Nutritional Quality, Species and Content of Organic Selenium in Mustard[J]. Agronomy, 2023, 13(5): 1425.(IF 3.7)
[60] Liu Y, Zhou J, Chen Y, et al. GmSTK12 Participates in Salt Stress Resistance in Soybean[J]. Agronomy, 2023, 13(2): 613.(IF 3.7)
[61] Wang Y, Zhou E, Yao M, et al. PEG-6000 Priming Improves Aged Soybean Seed Vigor via Carbon Metabolism, ROS Scavenging, Hormone Signaling, and Lignin Synthesis Regulation[J]. Agronomy, 2023, 13(12): 3021.(IF 3.7)
[62] Zhang L, Zhang R, Ye X, et al. Overexpressing VvWRKY18 from grapevine reduces the drought tolerance in Arabidopsis by increasing leaf stomatal density[J]. Journal of Plant Physiology, 2022, 275: 153741.(IF 3.686)
[63] Wang F H, Zhang C, Wang C L, et al. Estimating the role of maize Y-EPSPS gene in glyphosate resistance in Arabidopsis transgenic lines[J]. Plant Growth Regulation, 2024: 1-13. (IF 3.5)
[64] Kou J, Su Y, Lei T, et al. Transcriptome and Physio-Biochemical Profiling Reveals Differentially Expressed Genes in Seedlings from Aerial and Subterranean Seeds Subjected to Drought Stress in Amphicarpaea edgeworthii Benth[J]. Agronomy, 2025, 15(3): 735. (IF 3.3)
[65] Zhang J, Chen Y, He J, et al. Genome-Wide Identification of LACS Family Genes and Functional Characterization of CaLACS6/9 in Response to Cold Stress in Pepper (Capsicum annuum L.)[J]. Agronomy, 2025, 15(4): 970. (IF 3.3)
[66] Lu S, Zhu Z, Du T, et al. Nematicidal activity and preliminary mechanism of pyridazine compounds[J]. Physiological and Molecular Plant Pathology, 2025: 102836. (IF 3.3)
[67] Hu Z, Wang S, Wang Y, et al. Genome-Wide Identification of DREB Transcription Factor Family and Functional Analysis of PaDREB1D Associated with Low-Temperature Stress in Phalaenopsis aphrodite[J]. Horticulturae, 2024, 10(9): 933. (IF 3.1)
[68] Xiao H, Deng W, Ahmad B, et al. Cucurbita ficifolia Rootstock Enhances Resistance to Low-Temperature Stress in Cucumber[J]. Horticulturae, 2025, 11(3): 242. (IF 3.1)
[69] Li Q Y, Wang S, Wu G Y, et al. Physiological and biochemical changes in leaf abscission of Cyclocarya paliurus stem segments in vitro[J]. Plant Cell, Tissue and Organ Culture (PCTOC), 2023: 1-11.(IF 3)
[70] Zhang J, Fan J, Tan Z, et al. Identification of Glucose-6-Phosphate Dehydrogenase Family Members Associated with Cold Stress in Pepper (Capsicum annuum L.)[J]. Horticulturae, 2025, 11(7): 719. (IF 3.0)
[71] Li X, Xiu D, Huang J, et al. Nutshell Physicochemical Characteristics of Different Hazel Cultivars and Their Defensive Activity toward Curculio nucum (Coleoptera: Curculionidae)[J]. Forests, 2023, 14(2): 319.(IF 2.9)
[72] Liang Y E, Zhang H, Zhu J, et al. Transcriptomic Analysis Reveals the Involvement of Flavonoids Synthesis Genes and Transcription Factors in Dracaena cambodiana Response to Ultraviolet-B Radiation[J]. Forests, 2023, 14(5): 979.(IF 2.9)
[73] Li M, Qu X, Gong D, et al. Induced resistance to control postharvest stem-end rot by methyl jasmonate in mango fruit[J]. Physiological and Molecular Plant Pathology, 2024: 102426. (IF 2.8)
[74] Gao B, Wang Y, Qu J, et al. The overexpression of ascorbate peroxidase 2 (APX2) gene improves drought tolerance in maize[J]. Molecular Breeding, 2025, 45(2): 27. (IF 2.6)