

过氧化物酶 (POD) 活性检测试剂盒 Peroxidase (POD) Activity Assay Kit

Peroxidase (POD)

3,3'-Dimethoxy-4,4'-Biphenoquinone

Catalog Number **AKAO005C**Storage Temperature **2-8°C**Size **60T/50S**

Visible Spectrophotometry

过氧化物酶 (POD) 活性检测试剂盒 Peroxidase (POD) Activity Assay Kit

一、产品描述

过氧化物酶 (POD) 是生物体内一类含血红素的氧化酶,广泛存在于各种动物、植物和微生物体内,能够催化由过氧化氢参与的多种氧化反应,并且与呼吸作用、光合作用及生长素的氧化等多种生理生化过程密切相关,在细胞代谢的氧化还原过程中起重要作用。

过氧化物酶可催化 H_2O_2 氧化愈创木酚生成茶褐色 4-邻甲氧基苯酚,产物在 470 nm 处具有特征 吸收峰,通过吸光值变化即可表征过氧化物酶的活性。

二、产品内容

名称	试剂规格	储存条件	使用方法及注意事项
提取液	液体 60 mL×1 瓶	4℃保存	-
试剂一	液体 60 mL×1 瓶	4℃保存	-
试剂二	液体 0.4 mL×2 瓶	4℃避光保存	使用前每瓶加入 5 mL 试剂一充分混匀 (现用现配,配制后 4℃可保存一周)
试剂三	液体 6 mL×1 瓶	4℃避光保存	-

三、产品使用说明

测定过程中所需要的仪器和试剂: 可见分光光度计、1 mL 玻璃比色皿(光径 10 mm)、研钵/匀浆器、可调式移液器、台式离心机、恒温水浴/培养箱和蒸馏水。

1.粗酶液的制备(可根据预实验结果适当调整样本量及比例)

①组织:按照组织质量(g):提取液体积(mL)为1:(5-10)的比例(建议称取0.1g组织,加入1 mL提取液)处理样品,冰浴匀浆,4℃8000g离心10 min,取上清置于冰上待测。

注: 若质地坚硬植物样本, 可液氮研磨后再加入提取液, 冰浴匀浆后离心取上清置于冰上待测。

- ②细菌或细胞: 离心收集细菌或细胞至离心管内, 按照细菌或细胞数量 $(10^4 \, \text{个})$: 提取液体积(mL)为 (500-1000): 1 的比例(建议 500 万细菌或细胞加入 1 mL 提取液)处理样品,冰浴超声破碎(功率 20%或 $200\,\text{W}$,超声 $3\,\text{s}$,间隔 $10\,\text{s}$,重复 $30\,\text{次}$), 4°C $8000\,\text{g}$ 离心 $10\,\text{min}$,取上清置于冰上待测。
 - ③血清(浆)、培养液等液体样本:直接检测或使用提取液适当稀释后再进行检测。

2.测定步骤

- ①分光光度计预热 30 min 以上,调节波长至 470 nm,蒸馏水调零。
- ②试验前将**试剂一、试剂二和试剂三** 37° C(哺乳动物)或 25° C(其它物种)预热 10 min 以上。
- ③在1mL玻璃比色皿中依次加入下列试剂:

试剂	测定组
	(µL)
试剂一	750
试剂二	100
试剂三	100
粗酶液	50

吸光值测定: 立即充分混匀并开始计时,测定 30 s 时 470 nm 处吸光值 A1 和 90 s 时 470 nm 处 吸光值 A2, 计算 ΔA =A2-A1。

3.过氧化物酶 (POD) 活性计算

①按组织蛋白浓度计算

单位定义: 每 mg 组织蛋白在每 mL 反应体系中每分钟 A470 变化 0.01 为一个酶活力单位。

POD (U/mg prot) =
$$\frac{\Delta A \times V \text{ 反总}}{0.01 \times Cpr \times V \text{ 样} \times T} = \frac{2000 \times \Delta A}{Cpr}$$

②按组织样本质量计算

单位定义:每g组织在每mL反应体系中每分钟A470变化0.01为一个酶活力单位。

POD (U/g) =
$$\frac{\Delta A \times V \text{ 反 } \times V \text{ 样 } \times \text{ V}}{0.01 \times W \times V \text{ 样} \times \text{T}} = \frac{2000 \times \Delta A}{W}$$

③按细菌或细胞数量计算

单位定义:每10⁴个细菌或细胞在每mL反应体系中每分钟A470变化0.01为一个酶活力单位。

POD (U/10⁴ cell) =
$$\frac{\Delta A \times V \, \angle S \times V \, \angle K \times V}{0.01 \times 4 \times 1} = \frac{2000 \times \Delta A}{4 \times 1}$$
 细菌或细胞数量

④按液体样本体积计算

单位定义: 每 mL 液体样本在每 mL 反应体系中每分钟 A470 变化 0.01 为一个酶活力单位。

POD (U/mL) =
$$\frac{\Delta A \times V$$
 反总 $0.01 \times V$ 样 $\times T$ = 2000 $\times \Delta A$

注释: V 反总: 反应体系总体积, 1 mL; V 样: 反应体系中加入粗酶液的体积, 50 μL=0.05 mL; V 样总: 粗酶液总体积, 1 mL; T: 反应时间, 60 s=1 min; Cpr: 粗酶液蛋白浓度, mg/mL; W: 样本质量, g; 细菌或细胞数量: 以万计。

Beijing Boxbio Science & Technology Co., Ltd.

四、注意事项

- ①若测定样本较多,可将试剂一、试剂二和试剂三按比例配成检测工作液(现用现配),37℃(哺乳动物)或25℃(其它物种)预热10 min 以上,测定时加入50 μL 粗酶液和950 μL 检测工作液;
 - ②准确在相应时间点完成吸光值测定,以确保实验结果的准确性和重复性;
- ③若 ΔA 小于 0.005, 可适当延长反应时间(3-5 min)后再进行测定; 若 ΔA 大于 0.5, 建议将粗酶液使用提取液稀释后再进行测定, 计算时相应修改;
- ④为保证结果准确且避免试剂损失,测定前请仔细阅读说明书(以实际收到说明书内容为准),确认试剂储存和准备是否充分,操作步骤是否清楚,且务必取2-3个预期差异较大的样本进行预测定,过程中问题请您及时与工作人员联系。

For Research Use Only. Not for Use in Diagnostic Procedures.

boxbio

Manufactured and Distributed by

Beijing Boxbio Science & Technology Co., Ltd. Liandong U Valley, Tongzhou District, Beijing, China TEL: 400-805-8228

E-MAIL: techsupport@boxbio.cn Copyright © 2020 Boxbio, All Rights Reserved.

